无理数的由来
更新时间: 2025-12-05 05:36:21
无理数的由来:
公元前500年,古希腊毕达哥拉斯学派的弟子希伯修斯发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1。则对角线的长不是一个有理数),这一不可公度性与毕氏学派“万物皆为数”(只有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希伯修斯因此被囚禁,受到百般折磨,最后竟遭到沉舟身亡的惩处。
毕氏弟子的发现,第一次向人们揭示了有理数的缺陷,证明它不能同连续的无限直线同等看待,有理数没有布满数轴上的点,在数轴上存在着不能用有理数表示的“空隙”。而这种“空隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种“算术连续统”的设想彻底的破灭了。不可公度的发现连同著名的芝诺悖论一同被称为数学史上的第一次危机对以后两千多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽。
无理数的由来 相关文章
- 青岛的邮政编码多少(青岛市黄岛区邮政...
- 汉堡邮编(汉堡邮编查询)
- 四川眉山区号(四川眉山区号是028还...
- 深圳光明区邮政编码多少(深圳光明区的...
- 青岛邮政(青岛邮政招聘)
- 江苏南通邮政编码(江苏南通邮政编码崇...
- 各省市区(各省市区号)
- 加拿大各地区邮编(加拿大各地区邮政编...
- +258是哪个国家的区号(00595...
- 硚口区邮政编码(硚口区邮政编码是多少...
- 南京江北新区邮编(南京江北新区邮编号...
- 潍坊市奎文区的邮政编码(山东省潍坊市...
- 绍兴市邮编(绍兴市邮编号码是多少)
- 深圳罗湖邮政编码是多少(深圳罗湖区邮...
- 国家法律职业资格考试实施办法(国家法...
- 青岛城阳邮编(青岛城阳邮编号多少)
- +81(81)
- 广东省东莞市寮步镇邮政编码(东莞市寮...
- 西湖区邮政编码(西湖区邮政编码多少)
- 卡塔尔多哈邮编(卡塔尔多哈邮编是多少...
