如何正确地理解贝特朗悖论
更新时间: 2025-12-03 03:58:28
1899年,法国学者贝特朗提出了贝特朗悖论,矛头直指几何概率概念本身:在一给定圆内所有的弦中任选一条弦,求该弦的长度长于圆的内接正三角形边长的概率。
悖论分析:
由于对称性,可预先固定弦的一端。仅当弦与过此端点的切线的交角在60度到120度之间,其长才合乎要求。所有方向是等可能的,则所求概率为三分之一 。此时假定端点在圆周上均匀分布;由于对称性,可预先指定弦的方向。作垂直于此方向的直径,只有交直径于四分之一点与四分之三点间的弦,其长才大于内接正三角形边长。所有交点是等可能的,则所求概率为二分之一。此时假定弦的中心在直径上均匀分布;弦被其中点位置唯一确定。只有当弦的中点落在半径缩小了一半的同心圆内,其长才合乎要求。中点位置都是等可能的,则所求概率为四分之一。此时假定弦长被其中心唯一确定。这导致同一事件有不同概率,因此为悖论。
如何正确地理解贝特朗悖论 相关文章
其他相关资讯
- 青岛的邮政编码多少(青岛市黄岛区邮政...
- 汉堡邮编(汉堡邮编查询)
- 四川眉山区号(四川眉山区号是028还...
- 深圳光明区邮政编码多少(深圳光明区的...
- 青岛邮政(青岛邮政招聘)
- 江苏南通邮政编码(江苏南通邮政编码崇...
- 各省市区(各省市区号)
- 加拿大各地区邮编(加拿大各地区邮政编...
- +258是哪个国家的区号(00595...
- 硚口区邮政编码(硚口区邮政编码是多少...
- 南京江北新区邮编(南京江北新区邮编号...
- 潍坊市奎文区的邮政编码(山东省潍坊市...
- 绍兴市邮编(绍兴市邮编号码是多少)
- 深圳罗湖邮政编码是多少(深圳罗湖区邮...
- 国家法律职业资格考试实施办法(国家法...
- 青岛城阳邮编(青岛城阳邮编号多少)
- +81(81)
- 广东省东莞市寮步镇邮政编码(东莞市寮...
- 西湖区邮政编码(西湖区邮政编码多少)
- 卡塔尔多哈邮编(卡塔尔多哈邮编是多少...
天气预报导航
天气资讯
更多 >>
