双十字相乘法介绍
更新时间: 2025-12-07 03:55:41
1、分解形如ax2+bxy+cy2+dx+ey+f 的二次六项式在草稿纸上,将a分解成a1a2乘积作为一列,c分解成c1c2乘积作为第二列,f分解成f1f2乘积作为第三列,如果a1c2+a2c1=b,c1f2+c2f1=e,a1f2+a2f1=d,即第1,2列、第2、3列和第1,3列都满足十字相乘规则。则原式=(a1x+c1y+f1)(a2x+c2y+f2)。也叫长十字相乘法。
2、根据因式定理,找出一元多项式的一次因式的关键是求多项式的根。对于任意多项式,要求出它的根是没有一般方法的,然而当多项式的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根。
双十字相乘法介绍 相关文章
上一篇:麻花针围巾怎么织啊要详细说啊
下一篇:关于音乐教育的名言佳句
其他相关资讯
- 青岛的邮政编码多少(青岛市黄岛区邮政...
- 汉堡邮编(汉堡邮编查询)
- 四川眉山区号(四川眉山区号是028还...
- 深圳光明区邮政编码多少(深圳光明区的...
- 青岛邮政(青岛邮政招聘)
- 江苏南通邮政编码(江苏南通邮政编码崇...
- 各省市区(各省市区号)
- 加拿大各地区邮编(加拿大各地区邮政编...
- +258是哪个国家的区号(00595...
- 硚口区邮政编码(硚口区邮政编码是多少...
- 南京江北新区邮编(南京江北新区邮编号...
- 潍坊市奎文区的邮政编码(山东省潍坊市...
- 绍兴市邮编(绍兴市邮编号码是多少)
- 深圳罗湖邮政编码是多少(深圳罗湖区邮...
- 国家法律职业资格考试实施办法(国家法...
- 青岛城阳邮编(青岛城阳邮编号多少)
- +81(81)
- 广东省东莞市寮步镇邮政编码(东莞市寮...
- 西湖区邮政编码(西湖区邮政编码多少)
- 卡塔尔多哈邮编(卡塔尔多哈邮编是多少...
天气预报导航
天气资讯
更多 >>
